Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium.

نویسندگان

  • I Berman-Frank
  • P Lundgren
  • Y B Chen
  • H Küpper
  • Z Kolber
  • B Bergman
  • P Falkowski
چکیده

In the modern ocean, a significant amount of nitrogen fixation is attributed to filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium. In these organisms, nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme responsible for biological N2 fixation, is irreversibly inhibited by oxygen in vitro. How nitrogenase is protected from damage by photosynthetically produced O2 was once an enigma. Using fast repetition rate fluorometry and fluorescence kinetic microscopy, we show that there is both temporal and spatial segregation of N2 fixation and photosynthesis within the photoperiod. Linear photosynthetic electron transport protects nitrogenase by reducing photosynthetically evolved O2 in photosystem I (PSI). We postulate that in the early evolutionary phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor for anaerobic heterotrophic metabolism and that PSI was favored by selection because it provided a micro-anaerobic environment for N2 fixation in cyanobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements.

In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynth...

متن کامل

Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium

Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron require...

متن کامل

Release of Dissolved Organic Nitrogen by Marine Diazotrophic Cyanobacteria, Trichodesmium spp.

Trichodesmium sp. is a filamentous, colonial cyanobacterium which contributes substantially to the input of nitrogen in tropical and subtropical oceanic waters through nitrogen fixation (N(2) fixation). We applied a N tracer technique to assess the rate of release of dissolved organic nitrogen (DON) from this cyanobacterium and compared those rates with rates of N(2) fixation determined for the...

متن کامل

Process-understanding of marine nitrogen fixation under global change

In view of the current increase in atmospheric pCO2 and concomitant changes in the marine environment, it is crucial to assess, understand, and predict future responses of ecologically relevant phytoplankton species. The diazotrophic cyanobacterium Trichodesmium erythraeum was found to respond strongly to elevated pCO2 by increasing growth, production rates, and N2 fixation. The magnitude of th...

متن کامل

The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle.

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 294 5546  شماره 

صفحات  -

تاریخ انتشار 2001